mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

نویسنده

  • Mee-Sup Yoon
چکیده

Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر 4 هفته تمرین تناوبی با شدت بالا بر محتوای پروتئین‌های AKT1، mTOR، P70S6K1 و 4E-BP1 در عضله اسکلتی نعلی موش‌های صحرایی مبتلا به دیابت نوع 2 یک مطالعه تجربی

Background and Objectives: The most important mechanism of protein synthesis muscle is the mTORC1 pathway in skeletal muscle in which very important proteins play role. Diabetes disturbs this pathway through generating resistance to insulin. The effect of high intensity interval training (HIIT) has not been studied yet on this important pathway in type 2 diabetes. Therefore, the purpose of the ...

متن کامل

REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch.

The protein kinase mammalian target of rapamycin (mTOR) is well established as a key regulator of skeletal muscle size. In this study, we determined that the stress responsive gene REDD2 (regulated in development and DNA damage responses 2) is a negative regulator of mTOR signaling and is expressed predominantly in skeletal muscle. Overexpression of REDD2 in muscle cells significantly inhibited...

متن کامل

The effect of 8 weeks endurance exercise on the content of total and phosphorylated AKT1, mTOR, P70S6K1 and 4E-BP1 in skeletal muscle FHL of rats with type 2 diabetes

Introduction: The mTOR pathway in skeletal muscle plays a very important role in the protein synthesis process, which plays a very important role in proteins. The role of endurance exercise has not yet been studied in this important pathway in protein synthesis in people with type 2 diabetes. The purpose of the present study was to investigate the effect of 8 weeks endurance training on the con...

متن کامل

Ursolic acid induces myoglobin expression and skeletal muscle remodeling in mice

Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...

متن کامل

Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis

Mammalian target of rapamycin (mTOR) has emerged as a key regulator of skeletal muscle development by governing distinct stages of myogenesis, but the molecular pathways downstream of mTOR are not fully understood. In this study, we report that expression of the muscle-specific micro-RNA (miRNA) miR-1 is regulated by mTOR both in differentiating myoblasts and in mouse regenerating skeletal musc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017